A Complete Learning Journey Through 42 Hands-On Implementations
https://github.com/ShaliniAnandaPhD/PIXEL-PIONEERS-TUTORIALS
Welcome to a comprehensive collection of 42 machine learning tutorials built with JAX! Whether you're just starting your ML journey or looking to master advanced techniques, these tutorials will guide you step-by-step through real-world implementations.
From simple linear regression to cutting-edge transformers, each tutorial is designed to teach you practical skills while building something meaningful. You'll learn by doing, with plenty of examples, common pitfalls to avoid, and tips to help you succeed.
<aside> 📎
Find exactly what you need to learn with this organized guide
Start here if you're new to JAX
Basic JAX Operations:
jax_linear_regression.py) - ⭐⭐☆☆☆ | 2-3 hours
jax.numpy, jax.grad, @jax.jitJAX Data Processing:
jax_kmeans_customer_segmentation.py) - ⭐⭐☆☆☆ | 2-3 hours
jax.vmap, vectorization, array operationsJAX vs Other Frameworks:
Your First Neural Network:
jax_nutritional_content_prediction.py) - ⭐⭐☆☆☆ | 2-3 hours
Modern JAX with Flax:
jax_nutritional_content_prediction_flax.py) - ⭐⭐⭐☆☆ | 3-4 hours
Autoencoders:
jax_autoencoder_anomaly_detection.py) - ⭐⭐⭐☆☆ | 3-4 hoursjax_denoising_autoencoder.py) - ⭐⭐⭐☆☆ | 4-5 hoursAdvanced Architectures:
jax_vae_face_generation.py) - ⭐⭐⭐⭐☆ | 5-6 hoursjax_transfer_learning.py) - ⭐⭐⭐☆☆ | 4-5 hoursImage Classification:
jax_cifar10_cnn_classification.py) - ⭐⭐⭐☆☆ | 3-4 hours
Image Enhancement:
jax_srcnn_image_super_resolution.py) - ⭐⭐⭐☆☆ | 4-5 hoursjax_image_inpainting.py) - ⭐⭐⭐⭐☆ | 6-7 hoursImage Understanding:
jax_unet_image_segmentation.py) - ⭐⭐⭐☆☆ | 4-5 hoursjax_image_captioning_cnn_rnn.py) - ⭐⭐⭐⭐☆ | 5-6 hoursObject Detection & Tracking:
jax_yolo_object_detection.py) - ⭐⭐⭐⭐⭐ | 8-10 hoursjax_siamese_object_tracking.py) - ⭐⭐⭐⭐☆ | 6-8 hoursGenerative Vision:
jax_gan_image_generation.py) - ⭐⭐⭐☆☆ | 5-6 hoursjax_vae_face_generation.py) - ⭐⭐⭐⭐☆ | 5-6 hoursSentiment Analysis:
jax_bert_sentiment_analysis.py) - ⭐⭐⭐☆☆ | 4-5 hours
Language Models:
jax_gpt2_text_generation_simulated.py) - ⭐⭐⭐☆☆ | 3-4 hoursjax_transformer_translation.py) - ⭐⭐⭐⭐☆ | 6-8 hoursAudio to Text:
jax_deep_speech_recognition.py) - ⭐⭐⭐⭐⭐ | 8-10 hoursBasic Q-Learning:
jax_dqn_cartpole.py) - ⭐⭐⭐☆☆ | 4-5 hours
Improved DQN:
jax_dqn_reinforcement_learning.py) - ⭐⭐⭐☆☆ | 4-5 hours
Policy Gradient Methods:
jax_a3c_reinforcement_learning.py) - ⭐⭐⭐⭐☆ | 6-7 hoursMaking JAX Fast:
jax_nutritional_content_prediction_parallel.py) - ⭐⭐⭐⭐⭐ | 5-8 hoursCustom Implementations:
jax_nutritional_content_prediction_explicit_diff.py) - ⭐⭐⭐⭐☆ | 4-5 hours
</aside>File: jax_linear_regression.py
Difficulty: Beginner (⭐⭐☆☆☆) | Development Time: 2-3 hours
Problem Domain: Supervised regression for housing price prediction using California housing dataset (20,640 samples, 8 features).
JAX Features Implemented:
jax.numpy for array operationsjax.grad for automatic differentiation@jax.jit compilation for performance optimization